A study on compiler flags and performance events

Mirela Botezatu

Supervisor: Andrzej Nowak - CERN

February 26, 2013

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Motivation

The quality of the compiler directly impacts the quality of the binary.

 Compilers are the bridge between software and hardware, and the role they play in satisfying real-time and performance constraints is crucial.

We can help the compiler make the appropriate optimizations through the compiler flags.

Compilers have a pletoria of new capabilities, optimization techniques based on a vast amount of academic research. Fully exploiting them is not an easy task.

We can use performance events to understand the performance issues in the code.

 We can use the PMU to identify performance issues and monitor performance response. A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Goals

- Achieve a deeper understanding of the potential of new compilers and to see to what extent we can predict their performance.
- Exploratory analysis on performance events for an insightful benchmark characterization.
- Can we predict compiler optimizations from performance events counts?

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Numbers and figures triggering our motivation

A comparison of compiled *binary speed* of ICC and GCC on a syntthetic set of benchmarks from Adobe.

- ICC 13.1.0
- ✓ GCC 4.7.2

Benchmark	GCC -02	ICC -02	ICC gain
Functionobjects.cpp	157.2	154.5	1.01x
Loop_unroll.cpp	634.4	115.2	5.51x
Simple_types_constant_folding.cpp	81.7	103.1	0.79x
Simple_types_loop_invariant.cpp	281.6	197.1	1.42x
Stepanov_abstraction.cpp	184.1	140.3	1.31x
Stepanov_vector.cpp	200.5	143.8	1.39x

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Numbers and figures triggering our motivation

A comparison of compiled binary speed of ICC and GCC on ROOT.

- ICC 13.1.0
- GCC 4.7.2
- ROOT 5.34

Benchmark	GCC -02	ICC -02	ICC gain
bench	38.66	39.4	0.97x
stress	16.28	15.01	1.08x
stressShapes	1.04	0.89	1.16x
stressLinear	6.94	6.21	1.11x
stressSpectrum	3.66	4.38	0.83x
stressFit	2.46	2.17	1.13x

A study on compiler flags and performance events

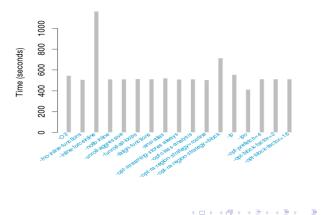
Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis


Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Numbers and figures triggering our motivation

Influence of compiler flags over the compile time - HEPSPEC06

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Some differences between ICC and GCC

Some exampes of differences between the O2 and O3 optimization levels for the two compilers ICC and GCC

- ✓ ICC enables inlining at O2 whereas GCC enables it at O3.
- ICC at O2 optimization level has inlining and other interprocedural optimizations within a source file, vectorization. Vectorization and most inlining is enabled in GCC only at the O3 optimization level.
- ✓ GCC enables "-fstrict-aliasing" (enforces strict aliasing rules) starting from O2 whereas ICC doesn't enable it not even at O3.
- ✓ Loop unrolling is enabled starting from O2 with ICC whereas in GCC at O2 there is the flag "frerun-loop-opt", which also enables some loop optimizations, but no loop unrolling.
- ✓ ICC has optimized math library functions by default.

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Compiler flags Performance events Benchmarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Prerequisites

Software

- ✓ Compiler flags
- Performance events
- ✓ Benchmarks

Physical

✓ The data collection environment (a mini-cluster)

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites

Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Compiler flags Performance events Benchmarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Compiler flags:

Notes:

- We did not include flags that disregard strict standards compliance
- We did not include flags that are enabled by default
- ✓ We did not include "tune for this architecture" switches

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Compiler flags Performance events Benchmarks

Compiler flags:

- ✓ -O3
- -fno-inline-functions
- -inline-forceinline
- -nolib-inline
- -unroll-aggressive
- ✓ -funroll-all-loops
- -falign-functions
- -ansi-alias
- ✓ -opt-streaming-stores always
- opt-class-analysis
- ✓ -opt-ra-region-strategy=routine
- ✓ -opt-ra-region-strategy=block
- 🗸 -ip
- 🗸 -ipo
- -opt-prefetch=4
- -opt-block-factor=2
- -opt-block-factor=16

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Compiler flags Performance events Benchmarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Performance events

Classification:

- General processor characterization
 - General metrics
 - Microarchitectural efficiency and resource utilization
- On-core memory access
- Off core memory access

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Compiler flags Performance events Benchmarks

Performance events:

- ✓ UNHALTED_CORE_CYCLES
- ✓ INSTRUCTION_RETIRED
- ✓ UOPS_RETIRED:ANY
- ✓ UOPS_ISSUED:ANY
- ✓ ARITH:CYCLES_DIV_BUSY
- ARITH:DIV
- ✓ RESOURCE_STALLS:ANY
- ✓ BR_INST_EXEC:ANY
- ✓ BR_MISP_RETIRED:ALL_BRANCHES
- ✓ BACLEAR:CLEAR
- ✓ L2_RQSTS_:IFETCH:HIT
- ✓ L2_RQSTS_IFETCH:MISS
- ✓ ITLB_MISSES
- ✓ DTLB_LOAD_MISSES
- ✓ MEM_LOAD_RETIRED:L1D_HIT
- ✓ MEM_LOAD_RETIRED:L2_HIT
- ✓ MEM_LOAD_RETIRED:LLC_UNSHARED_ HIT
- ✓ MEM_LOAD_RETIRED:OTHER_CORE_L2_ HIT_HITM
- ✓ MEM_UNCORE_RETIRED:LOCAL_HITM

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Compiler flags Performance events Benchmarks

Benchmarks:

- High Energy Physics (HEP) benchmarks a set of benchmarks developed in openlab, which consists of representative snippets for evaluating the code used at CERN.
- Root benchmarks benchmarks for stressing the functionality of ROOT
- ✓ Gooda I/O intensive benchmarks
- ✓ Adobe C++ Benchmarks a set of C++ benchmarks typically used to quantify how well top compiler vendors implement various C++ operations and language features.
- ✓ FFT a Fast Fourier Transform implementation

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Collection environment Parallel Setup Results

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Collection environment

25 x Westmere EP machines Intel(R) Xeon(R) CPU X5650

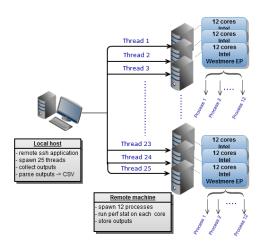
- ✓ 24 cores (each)
- ✓ Frequency: 2713 MHz
- ✓ Nr sockets: 2
- Hyper-Threading on
- ✓ Cache size: 12288KB, RAM size: 47 GB
- ✓ Linux Kernel 3.6
- ✓ Perf Tool 3.6

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks


Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Collection environment Parallel Setup Results

Parallel Setup

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Collection environment Parallel Setup Results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Results

A serial environment would have cost us 98 days (37 benchmarks x 786 configurations x 5 minutes)

- ✓ 2h20' for running all the CPU intensive benchmarks
- ✓ 6 hours for running all the I/O intensive benchmarks
- ✓ Performance data for 29082 test runs.

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Data analysis

- 1. Statistics on compiler flags
- 2. Coefficient of variation of performance events
- 3. Correlations of performance events
- 4. Principal Component Analysis

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Flags bringing a performance gain, ordered by frequency

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis Statistics on compiler flags

Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

Compiler flag	Counts	Compiler flag	Counts
03	963	Opt-streaming-stores-always	694
lpo	951	Ansi-alias	686
Opt-ra-region-strategy=routine	821	Opt-prefetch=4	674
lp	761	Faling-functions	657
Opt-ra-region-strategy=block	760	Unroll-aggressive	652
Funroll-all-loops	753	fno-inline-functions	628
Nolib-inline	740	ipo	694
Inline-forceinline	738	Opt-block-factor=16	616
Opt-class-analysis	700	Opt-block-factor=2	608

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Flags causing performance degradation ordered by frequency

Compiler flag	Counts	Compiler flag	Counts
Opt-streaming-stores-always	1071	Ansi-alias	686
Nolib-inline	1004	Opt-prefetch=4	675
O3	838	Funroll-all-loops	673
lpo	822	Inline-forceinline	665
Opt-ra-region-strategy=block	818	Unroll-aggressive	656
fno-inline-functions	773	Opt-class-analysis	647
Opt-ra-region-strategy=routine	757	Opt-block-factor=16	590
lp	710	Opt-block-factor=2	586

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Coefficient of variation of performance events

Events Coefficient of variation UNHALTED CORE CYCLES 0.021 INSTRUCTION RETIRED 0 0 0 4 LIOPS RETIRED ANY 0 0 0 4 UOPS_ISSUED.ANY 0.005 ARITH.CYCLES DIV BUSY 0.12 ARITH DIV 0.08 RESOURCE_STALLS.ANY 0.035 BR INST EXEC.ANY 0.006 BR MISP BETIRED ALL BRANCHES 0.01 BACLEAR CLEAR 0.09 L2 BOSTS IFETCH HIT 0.081 1.2 BOSTS IFFTCH MISS 0.089 ITLB MISSES 009 DTLB_LOAD_MISSES 0.094 MEM LOAD RETIRED.L1D HIT 0.006 MEM LOAD BETIBED 12 HIT 0.02 MEM_LOAD_RETIRED.LLC_UNSHARED_HIT 0.04 0.09 MEM LOAD RETIRED.OTHER CORE L2 HIT HITM MEM_UNCORE_RETIRED.LOCAL_HITM 0.012 MEM_UNCORE_RETIRED.LOCAL_DRAM_ AND_REMOTE_CACHE_HIT 0.059 MEM UNCORE RETIRED. REMOTE DRAM 0.29 MEM LINCORE BETIRED REMOTE HITM 0 78 MEM_UNCORE_RETIRED_OTHER_LLC.MISS 0.09

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Correlations of performance events

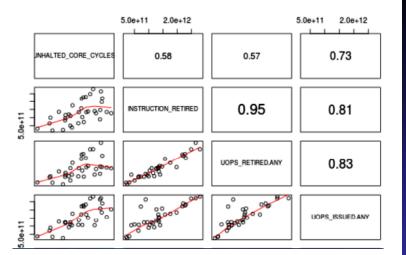
	5.00+11 2.00+12		5.0+11 2.8+12		e=00 2e=10 4e+10		5e+00 1.5e+10		1e-00 3e-00 6e-00		0e+00 4e+11 8e+11		0.0e+00 1.5e+09
NMALTED_COME_CYCLES	0.58	0.57	0.73			4.39					te .		-
يتجتبني والمستني	NETFOCION, NETROS	0.95	0.81	-		6.61					0.80		-
	intering and	UOPS, RETWOMAY	0.83								0.91		
	and the second	مىلىرى مەرىلىغۇر	1075,8182.007					-		-	0.70		
				MTHOPSIN, 09, 8497	0.84		-	-		~		-	
					ARTHON			-			-	-	-
معيد		je i j	Jack	·	1 march	IF, NT, DECAY							
				Ċ.	Ċ		07,72702AL,0406	0.00					
						and the second		BIGAMBAN	0.86	0.90		4.57	0.61
-									UL/REFERENCE	0.77			0.52
								· . ·		7.1,9698		0.55	0.60
	and the second	A.S.	فتجرينها	·	<u></u>	~	No.	ju.		·	EN,LOND, MITPHEGLID, N		
								<u> </u>		/: `		NIN JOAN REPRINTED	0.82
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		P	<u>. </u>	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · ·	200-07 130-05	<u> </u>	2			ACATINELLC, MEN

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks


Data retrieval Collection environment Parallel Setup Results

Data analysis Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Correlations of performance events

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis Statistics on compiler flags Coefficient of variation Correlations of performance events

PCA and varimax rotation

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 ● のへの

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Principal component analysis

Principal Component Analysis is a technique for dimensionality reduction, data visualization and compression, latent concept discovery, and preprocessing data in general.

PCA is used to answer the following questions:

- 1. What are the main performance bottlenecks?
- 2. Can we identify the characteristics of a new benchmark?

A study on compiler flags and performance events

Mirela Botezatu

Objective

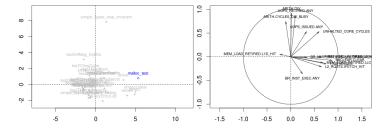
Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation


What are the main performance bottlenecks?

A study on compiler flags and performance events

Events	Factor1	Factor2	Factor3	Factor4	Mirela Botezatu
UNHALTED_CORE_CYCLES	0.646	0.260	-0.561		innoita DotoLata
INSTRUCTION_RETIRED	-0.686	0.601	-0.141	0.276	
UOPS_RETIRED.ANY	-0.736	0.465	-0.238	0.343	Objective
UOPS_ISSUED.ANY	-0.670	0.583	-0.189	0.320	Description
ARITH.CYCLES_DIV_BUSY	0.142		-0.903		Prerequisites
ARITH.DIV	0.146		-0.904		Compiler flags
RESOURCE_STALLS.ANY	0.476	-0.217	-0.215	-0.766	Performance events
BR_INST_EXEC.ANY	-0.410	0.826		0.234	Benchmarks
BR_MISP_RETIRED.ALL_BRANCHES	0.163	0.895	0.169	0.116	Data retrieval
BACLEAR.CLEAR	-0.191	0.478			Collection environment
L2_RQSTS.IFETCH_HIT	-0.694	0.214	0.332	0.322	Parallel Setup
L2_RQSTS.IFETCH_MISS	0.304	0.760	0.141		Results
ITLB_MISSES	-0.846		0.297	0.201	
DTLB_LOAD_MISSES	0.311		0.386	-0.579	Data analysis
MEM_LOAD_RETIRED.L1D_HIT	-0.890		-0.155	0.227	Statistics on compiler
MEM_LOAD_RETIRED.L2_HIT	0.421	0.178	0.394	-0.158	flags
MEM_LOAD_RETIRED.LLC_UNSHARED_HIT	0.287		0.220	-0.898	Coefficient of variation
MEM_LOAD_RETIRED.OTHER_CORE_L2_ HIT_HITM	-0.879	-0.168	0.205	0.171	Correlations of performance events
MEM_UNCORE_RETIRED.LOCAL_HITM	-0.870	-0.170	0.206	0.165	PCA and varimax rotation
MEM_UNCORE_RETIRED.LOCAL_DRAM_	0.479	-0.215	0.232	0.220	
AND_REMOTE_CACHE_HIT					Conclusions
MEM_UNCORE_RETIRED.REMOTE_DRAM		-0.151	-0.846		

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Can we identify the characteristics of a new benchmark?

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Can we predict compiler flags given performance events counts?

Random forests

Accuracy	Precision	mtry	ntree	mincriterion
80	82	5	1000	0

- tuned parameters (mtry, ntree)
- quality of the model asserted through OOB (out of bag error estimate)
- reported values were averaged on different seeds

A study on compiler flags and performance events

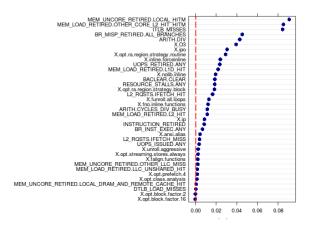
Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis


Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Variable importance

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Conclusions

- The selection of the beneficial compiler flags is subject to a judicious choice.
- ✓ Some optimization flags makes the compiler attempt to improve the binary speed and/or code size at the cost of compilation time.
- The projection matrix obtained after performing PCA can be used to identify the performance issues of a new benchmark.
- ✓ We have built a model that is able to associate performance bottlencks with the compiler optimization flags that are likely to attenuate them.

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Thank you!

A study on compiler flags and performance events

Mirela Botezatu

Objective

Prerequisites Compiler flags Performance events Benchmarks

Data retrieval Collection environment Parallel Setup Results

Data analysis

Statistics on compiler flags Coefficient of variation Correlations of performance events PCA and varimax rotation

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ